Evaluation of diffusion mechanisms in NiAl by embedded-atom and first-principles calculations

نویسندگان

  • Y. Mishin
  • A. Y. Lozovoi
  • A. Alavi
چکیده

The energetics of Ni vacancy jumps in the intermetallic compound NiAl are studied by combining embedded-atom and first-principles calculations. The embedded-atom potential used in this work is fit to both experimental and first-principles data and provides an accurate description of point defect energies and vacancy jump barriers in NiAl. Some of the embedded-atom results reported here, are independently verified by plane-wave pseudopotential calculations. The results suggest that the atomic configuration produced by a nearest-neighbor jump of a Ni vacancy is mechanically unstable. Because of this instability, the vacancy implements two sequential nearest-neighbor jumps as one collective, two-atom transition. Such collective jumps initiate and complete six-jump vacancy cycles of a Ni vacancy, which are shown to occur by either four or three vacancy jumps. Next-nearest-neighbor vacancy jumps are shown to have diffusion rates comparable to experimental ones at the stoichiometric composition, suggesting that this is an important diffusion mechanism in NiAl.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-principles characterization of Ni diffusion kinetics in -NiAl

First-principles density functional theory calculations are performed to examine five postulated diffusion mechanisms for Ni in NiAl: next-nearest-neighbor NNN jumps, the triple defect mechanism, and three variants of the six-jump cycle. In contrast to most previous theoretical work, which employed empirical interatomic potentials, we provide a more accurate nonempirical description of the mech...

متن کامل

The effect of platinum on diffusion kinetics in beta-NiAl: implications for thermal barrier coating lifetimes.

Platinum is added to thermal barrier coatings (TBCs) as it is observed empirically to extend their lifetime, but the mechanism by which Pt acts is unknown. Since Pt has been proposed to alter diffusivities in NiAl, a key component of TBCs, we use first-principles quantum mechanics calculations to investigate atomic level diffusion mechanisms. Here, we examine the effect of Pt on five previously...

متن کامل

Embedded-atom potential for B2-NiAl

An embedded-atom potential has been constructed for the intermetallic compound B2-NiAl by fitting to both experimental properties and ab initio data. The ab initio data have been generated in the form of energy-volume relations for a number of alternative structures of NiAl and Ni3Al, as well as for Ni and Al. The potential accurately reproduces the basic lattice properties of B2-NiAl, planar f...

متن کامل

First principles calculations of the effect of Pt on NiAl surface energy and the site preference of Pt

Pt-modified NiAl is widely used as a coating material in industry. In this study, the surface energies of NiAl with and without Pt are investigated using first-principles calculations. The presence of Pt in NiAl takes the surface electronic states to higher energies, resulting in an increased surface energy, which explains some of the beneficial effects of Pt on the oxidation resistance of NiAl...

متن کامل

Numerical Calculation of Resonant Frequencies and Modes of a Three-Atom Photonic Molecule and a Photonic Crystal in an External Cavity

In the present paper, resonant frequencies and modes of a three-atom photonic molecule and a photonic crystal placed within a cavity are numerically calculated. First, governing formulation in transverse electric field mode (TE) is obtained using Maxwell equations. Then, an algorithm based on a finite difference scheme and matrix algebra is presented. The algorithm is then implemented in a comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003